Rayat Shikshan Sanstha's
 Yashavantrao Chavan Institute of Science, Satara (Autonomous) Department of Mathematics
 B.Sc. I (Semester-II)
 Differential Equations-II (BMT-202)
 Subject Code: 16002

1: Answer in one sentence

1) For the equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$, if $P+x Q=0$ then what will be its particular integral?
2) The homogeneous linear differential equation can be reduced to linear equation with constant coefficient by using which substitution?
3) By using substitution $z=\log x$ what is the value of $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}$?
4) Write the condition of integrability of the total differential equation $P d x+Q d y+R d z=0$.
5) In the simultaneous differential equation $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ what will be the P, Q, R ?
6) What is the solution of homogeneous linear equation $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-3 y=0$?
7) By using substitution $x=e^{z}$ what is the value of $x^{3} \frac{d^{3} y}{d x^{3}}$?
8) For the equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0$, if $m^{2}+m P+Q=0$, then what is its particular integral?
9) Define method of grouping for solving simultaneous equation $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.
10) In the total differential equation $P d x+Q d y+R d z=0$, what will be P, Q, R ?
11) Find the complementary function of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x$.
12) By using substitution $x=e^{z}$ what will be the value of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$?
13) In solving $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$ by change of dependent variable method, the complete solution is given by $y=u v$ where u is?
14) If $1-P+Q=0$ then what is the known solution of

Complementary function of the differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$?
15) What is the geometrical relation between total differential equation
and simultaneous differential equation?
16) If $1+P+Q=0$ then what is the known solution of Complementary function of the differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$?
18) If $2+2 P x+Q x^{2}=0$ then what is the known solution of Complementary function of the differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$?
19) If $m(m-1)+m P x+Q x^{2}=0$ then what is the known solution of complementary function of the differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$?
20) Find the complementary function of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=\frac{1}{x}$.
21) By using substitution $x=e^{z}$ what is the value of $x^{4} \frac{d^{4} y}{d x^{4}}$?
22) By using substitution $x=e^{z}$ what is the value of $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y$?
23) Find one of the solution of simultaneous differential equation $\frac{d x}{x z}=\frac{d y}{y z}=\frac{d z}{(x+y)^{2}}$.
24) Find one of the solution of simultaneous differential equation $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$.
25) If the condition of integrability is satisfied then what is the solution of the equation $d x+d y+(x+y) d z=0$.

2. Long answer questions

1) Discuss the method of solving $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$, where P, Q, R are functions of x only, when one solution of $f(D) y=0$ is known.
2) Explain the method to find the solution of homogeneous linear differential equation.
3) State and prove the condition of integrability of total differential equation $P d x+Q d y+R d z=0$ (where P, Q, R are functions of x, y, z) and hence solve $y z d x+z x d y+x y d z=0$
4) Discuss the method of solving $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0$, where P, Q, R are functions of x only by changing independent variable.
5) Solve $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=x^{2}+x+1$.
6) Write the geometrical interpretation of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ and solve $\frac{d x}{y z}=\frac{d y}{x z}=\frac{d z}{x y}$.
7) Solve $x \frac{d^{2} y}{d x^{2}}-2(x+1) \frac{d y}{d x}+(x+2) y=(x-2) e^{2 x}$.
8) Discuss the method of solving $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$, where P, Q, R are functions of x only by changing dependent variable.
9) Write the geometrical interpretation of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ and solve $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$.
10) Write the geometrical interpretation of $P d x+Q d y+R d z=0$ and solve $2 x d x+2 y d y+\left(x^{2}+y^{2}+e^{z}\right) d z=0$.
11) Write the geometrical interpretation of $P d x+Q d y+R d z=0$ and solve $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$.
12) State and prove the condition of integrability of total differential equation $P d x+Q d y+R d z=0$ (where P, Q, R are functions of $x, y, z)$ and hence solve $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$.
13) Solve $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}+y=4 \cos \log (x+1)$.
14) Solve $(1-x)^{2} \frac{d^{2} y}{d x^{2}}-(1-x) \frac{d y}{d x}+4 y=\sin \log (1-x)$.
15) State and prove the condition of integrability of total differential equation $P d x+Q d y+R d z=0$ (where P, Q, R are functions of x, y, z) and hence solve $(y+z) d x+(z+x) d y+(x+y) d z=0$.

3. Short answer questions

1) Find the solution of $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}-y=2 \log (x+1)$.
2) Find the solution of $x^{2} \frac{d^{2} y}{d x^{2}}-2\left(x^{2}+x\right) \frac{d y}{d x}+\left(x^{2}+2 x+2\right) y=0$ by change of dependent variable.
3) Solve $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$.
4) Find the solution of $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$.
5) Find the solution of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-4 y=x^{2}$.
6) Solve $\frac{d x}{x z}=\frac{d y}{y z}=\frac{d z}{(x+y)^{2}}$.
7) Find the solution of $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x$.
8) Solve $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$.
9) Solve $2 x d x+2 y d y+\left(x^{2}+y^{2}+e^{z}\right) d z=0$.
10) Find the solution of $x^{2} \frac{d^{2} y}{d x^{2}}-2\left(x^{2}+x\right) \frac{d y}{d x}+\left(x^{2}+2 x+2\right) y=0$
11) Solve $\frac{d^{2} y}{d x^{2}}-2 \tan x \frac{d y}{d x}+3 y=2 \sec x$, if $y=\sin x$ is known solution.
12) Solve $y z d x+z x d y+x y d z=0$.
13) Explain the geometrical relation between total differential equation and simultaneous differential equation.
14) Solve $\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l x-m y}$.
15) solve $(y+z) d x+(z+x) d y+(x+y) d z=0$.
16) solve $(x-y) d x-x d y+z d z=0$.
17) solve $y z d x+2 x z d y-3 x y d z=0$.
18) Solve $\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}$
19) Solve $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
20) Write the geometrical interpretation of $P d x+Q d y+R d z=0$.
21) Write the geometrical interpretation of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.
22) Solve $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$
23) solve $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$.
24) Find the solution of $x^{3} \frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+2 x y=1$.
25) Find the solution of $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$.
26) Find the solution of $x \frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}=\frac{1}{x}$.
27) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^{3}$.
28) Solve $\frac{d^{2} y}{d x^{2}}-\cot x \frac{d y}{d x}+\sin ^{2} x y=\cos x-\cos ^{3} x$.
29) $x \frac{d^{2} y}{d x^{2}}-\left(4 x^{2}-1\right) \frac{d y}{d x}+4 x^{3} y=2 x^{3}$
30) Solve $\frac{x d x}{y^{2} z}=\frac{d y}{z x}=\frac{d z}{y^{2}}$
