Rayat Shikshan Sanstha's Yashavantrao Chavan Institute of Science, Satara (Autonomous) Department of Mathematics B.Sc. I (Semester-II) Differential Equations-II (BMT-202) Subject Code: 16002

1: Answer in one sentence

- 1) For the equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, if P + xQ = 0 then what will be its particular integral?
- 2) The homogeneous linear differential equation can be reduced to linear equation with constant coefficient by using which substitution?
- 3) By using substitution z = logx what is the value of $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx}$?
- 4) Write the condition of integrability of the total differential equation

$$Pdx + Qdy + Rdz = 0$$

- 5) In the simultaneous differential equation $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ what will be the *P*, *Q*, *R*?
- 6) What is the solution of homogeneous linear equation $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} 3y = 0$? 7) By using substitution $x = e^z$ what is the value of $x^3 \frac{d^3y}{dx^3}$?
- 8) For the equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$, if $m^2 + mP + Q = 0$, then what is its particular integral?
- 9) Define method of grouping for solving simultaneous equation $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$.
- 10) In the total differential equation Pdx + Qdy + Rdz = 0, what will be P, Q, R?
- 11) Find the complementary function of the differential equation $x^{2} \frac{d^{2}y}{dx^{2}} - 4x \frac{dy}{dx} + 6y = x.$
- 12) By using substitution $x = e^{z}$ what will be the value of $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx}$?
- 13) In solving $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ by change of dependent variable method, the complete solution is given by y = uv where u is?
- 14) If 1 P + Q = 0 then what is the known solution of

Complementary function of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$?

15) What is the geometrical relation between total differential equation

and simultaneous differential equation?

16) If 1 + P + Q = 0 then what is the known solution of

Complementary function of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$? 18) If $2 + 2Px + Qx^2 = 0$ then what is the known solution of

Complementary function of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R?$

19) If $m(m-1) + mPx + Qx^2 = 0$ then what is the known solution of

complementary function of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$?

20) Find the complementary function of the differential equation $x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + y = \frac{1}{x}.$

21) By using substitution $x = e^z$ what is the value of $x^4 \frac{d^4y}{dx^4}$?

- 22) By using substitution $x = e^{z}$ what is the value of $x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} 2y$?
- 23) Find one of the solution of simultaneous differential equation $\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{(x+y)^2}.$
- 24) Find one of the solution of simultaneous differential equation $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}.$
- 25) If the condition of integrability is satisfied then what is the solution of the equation dx + dy + (x + y)dz = 0.

2. Long answer questions

1) Discuss the method of solving $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, where *P*, *Q*, *R* are functions of *x* only, when one solution of f(D)y = 0 is known.

2) Explain the method to find the solution of homogeneous linear

differential equation.

3) State and prove the condition of integrability of total differential equation Pdx + Qdy + Rdz = 0 (where *P*, *Q*, *R* are functions of x, y, z) and hence solve yzdx + zxdy + xydz = 0

4) Discuss the method of solving $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$, where *P*, *Q*, *R* are functions of *x* only by changing independent variable.

5) Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = x^2 + x + 1.$

6) Write the geometrical interpretation of
$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$
 and solve $\frac{dx}{yz} = \frac{dy}{xz} = \frac{dz}{xy}$.

7) Solve
$$x \frac{d^2 y}{dx^2} - 2(x+1) \frac{dy}{dx} + (x+2)y = (x-2)e^{2x}$$
.

- 8) Discuss the method of solving $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, where *P*, *Q*, *R* are functions of *x* only by changing dependent variable.
- 9) Write the geometrical interpretation of $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$ and solve $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}$.
- 10) Write the geometrical interpretation of Pdx + Qdy + Rdz = 0 and solve $2xdx + 2ydy + (x^2 + y^2 + e^z)dz = 0$.
- 11) Write the geometrical interpretation of Pdx + Qdy + Rdz = 0 and

solve
$$(yz + 2x)dx + (zx - 2z)dy + (xy - 2y)dz = 0.$$

12) State and prove the condition of integrability of total differential equation Pdx + Qdy + Rdz = 0 (where *P*, *Q*, *R* are functions of x, y, z) and hence solve $(2x + y^2 + 2xz)dx + 2xydy + x^2dz = 0$.

13) Solve
$$(x + 1)^2 \frac{d^2 y}{dx^2} + (x + 1) \frac{dy}{dx} + y = 4 \cos \log(x + 1).$$

- 14) Solve $(1-x)^2 \frac{d^2y}{dx^2} (1-x)\frac{dy}{dx} + 4y = \sin \log(1-x)$.
- 15) State and prove the condition of integrability of total differential equation Pdx + Qdy + Rdz = 0 (where *P*, *Q*, *R* are functions of x, y, z) and hence solve (y + z)dx + (z + x)dy + (x + y)dz = 0.

3. Short answer questions

1) Find the solution of $(x + 1)^2 \frac{d^2 y}{dx^2} + (x + 1) \frac{dy}{dx} - y = 2\log(x + 1)$.

2) Find the solution of $x^2 \frac{d^2 y}{dx^2} - 2(x^2 + x)\frac{dy}{dx} + (x^2 + 2x + 2)y = 0$ by change

of dependent variable.

3) Solve
$$\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$$
.

4) Find the solution of (yz + 2x)dx + (zx - 2z)dy + (xy - 2y)dz = 0.

5) Find the solution of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = x^2$.

6) Solve
$$\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{(x+y)^2}$$
.

7) Find the solution of $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x$.

8) Solve $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}$. 9) Solve $2xdx + 2ydy + (x^2 + y^2 + e^z)dz = 0$.

- 10) Find the solution of $x^2 \frac{d^2y}{dx^2} 2(x^2 + x)\frac{dy}{dx} + (x^2 + 2x + 2)y = 0$ 11) Solve $\frac{d^2y}{dx^2} - 2tanx\frac{dy}{dx} + 3y = 2secx$, if y = sinx is known solution. 12) Solve yzdx + zxdy + xydz = 0.
- 13) Explain the geometrical relation between total differential equation

and simultaneous differential equation.

14) Solve
$$\frac{dx}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{lx-my}$$
.
15) solve $(y+z)dx + (z+x)dy + (x+y)dz = 0$.
16) solve $(x-y)dx - xdy + zdz = 0$.
17) solve $yzdx + 2xzdy - 3xydz = 0$.
18) Solve $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2y^2z^2}$
19) Solve $\frac{dx}{x(y^2-z^2)} = \frac{dy}{-y(z^2+x^2)} = \frac{dz}{z(x^2+y^2)}$
20) Write the geometrical interpretation of $Pdx + Qdy + Rdz = 0$.
21) Write the geometrical interpretation of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$.
22) Solve $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$
23) solve $(2x + y^2 + 2xz)dx + 2xydy + x^2dz = 0$.
24) Find the solution of $x^3\frac{d^2y}{dx^2} - 2x^2\frac{dy}{dx} + 2xyy = 1$.

- 25) Find the solution of $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = 2x^2$.
- 26) Find the solution of $x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = \frac{1}{x}$.
- 27) Solve $x^2 \frac{d^2 y}{dx^2} 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$.
- 28) Solve $\frac{d^2y}{dx^2} \cot x \frac{dy}{dx} + \sin^2 xy = \cos x \cos^3 x.$

29)
$$x \frac{d^2 y}{dx^2} - (4x^2 - 1) \frac{dy}{dx} + 4x^3 y = 2x^3$$

30) Solve $\frac{xdx}{y^2 z} = \frac{dy}{zx} = \frac{dz}{y^2}$